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A Multi-layer Description of the
Environment using Curvature

Information for Robot Navigation
J. Almeida, L. J. Manso, A. Bandera* and P. Núñez

Abstract—In this paper, a novel method for
a multi-layer description of the enviroment
based on curvature information is presented.
The proposal consists of three consecutive
stages: data acquisition and pre-processing,
segmentation and landmarks extraction. The
main novelty of this work is the use of a
RGBD sensor that projects the 3D points onto
a set of planes to different heights. Each one of
these planes corresponds to different scan laser
readings that are segmented using an adaptive
curvature estimation. This adaptive segmen-
tation is used to directly extract breakpoints,
line segments and real and virtual corners
of the 3D environment. Experimental results
show that the proposed approach is efficient for
detecting landmarks in structured and semi-
structured real and virtual environments. A
comparative study of similar approaches in
terms of robustness and accuracy demostrates
the improvements of the presented environ-
ment description system.

Index Terms—Adaptive curvature function,
environment description, natural landmarks.

I. INTRODUCTION

A mobile robot working in real scenarios
must have the capability of autonomously
navigating in its environment. One of the
necessary prerequisites for autonomous nav-
igation is the capability of building a map
or a representation of the working area (i.e.,
mapping). Extracting this spatial information
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from the environment has an important posi-
tive effect on different problems in robotics,
such as localization, path planning, obstacles
avoidence or Simmultaneous Localization
and Mapping (SLAM).

In theory, if a robot is equipped with
sensors, it can acquire an incredible amount
of information about the spatial structure
of its environment. Vision or range sensors
(e.g., sonar or laser) have been tradittionally
used in the last decades for most of the re-
searchers. Recently, low-cost RGBD sensors
that acquire both RGB and depth images
have become very popular in the robotics
community. Independently of the type of
sensor, the robot must choose the spatial
representantion and be capable to process the
reading at real time.

This paper adopts an approach based on
features (or landmarks) for the spatial repre-
sentation using a RGBD sensor, where land-
marks can be defined as ”distinct features
that a vehicle can recognize reliably from
its sensor observations”. As general rule,
the success of the environment description
systems for robot navigation depends on:
i) the chosen type of landmarks and the
existence of accurate sensors capable of ac-
quiring an enough number of features for
a complete description of the environment;
and ii) the availability of fast and reliable
algorithms capable of extracting and charac-
terizing landmarks from a large set of noisy
and uncertain data.

The main contribution of this work
is to provide the robot with the capacity to
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Fig. 1. The approach uses the RGBD sensor mounted
on robot RobEx to extract and characterize a set of
natural landmarks: line and curve segments, and real
and virtual corners. The RGBD information is projected
to different planes and each one is used like a virtual
scan reading.

extract several types of landmarks that are
present in structured and semistructured 3D
indoor environments using a RGBD sensor at
real-time. Information acquired by the sensor
is projected onto a set of planes to different
heights that are then segmented using an
adaptive curvature estimation (see Fig. 1).
This method extends the works presented by
the authors in [1], improving the map gener-
ated by the robot and including more features
in the 3D robot surrounding for being used
in later robot navigation algorithms, such as
SLAM or scan matching.

The presented paper is organized as fol-
lows: after discussing known approaches to
the mapping problem for robotic naviga-
tion in Section II, Section III introduces the
method for emulating different laser scans to
different heights. Next, Section IV presents
an overview of the proposed approach for
describing the 3D robot environment. In Sec-
tion V, the experimental results are pointed
out, and finally, Section VI describes the
conclusions and future works of this work.

II. RELATED WORKS

The problem of describing the robot
surrounding has been tackled of different
ways in the literature. Typical choices for
the spatial representation include Topologi-
cal [2], Grid-based [3], Semantic-based [4]
and Feature-based [1], [5] approaches. Each

representation has its own advantages and
disadvantages. Typically Grid-based mod-
els are computationally expensive and re-
quire a huge amount of memory, whereas
Topological-based and Semantic-based mod-
els rely on predefined scenarios, which as-
sumes that some structures in the environ-
ments are known in advance (e.g, corridors
or rooms). On the contrary, Feature-based
representations allow the use of multiple
geometric models to describe the different
parts of the robot environment. In general,
these methods reduce the computational load
and memory constraints and makes them
attractive because of their versatility and
compactness.

Most of the Feature-based approaches are
based on structures whose nature differs ac-
cording to the environment (e.g., indoor or
outdoor) and the kind of sensor the robot
is equipped with. Vision-based sensors have
been used for extracting different features
from the robot surrounding (a good review is
done in [7]), however applying vision to the
mapping problem leads to increase CPU us-
age due to the complexity of the algorithms.
Range sensors, such as sonars or laser range
finders, have been also used for extracting
features from the environment [1], [5]. Con-
trary to vision systems, the complexity of
the feature extraction algorithms that work
with sonar or laser sensors is usually very
reduced. Finally, RGBD sensors allows the
robot to describe the environment using both
image and depth information, processing col-
ored clouds of 3D points whose computa-
tional load is very high [6]. The approach
described in this paper works with depth
information, but different to other methods,
the robot uses the depth information from the
RGBD sensor for generating a set of virtual
laser range finder sensors whose 2D readings
are after independently processed.

Structured or semi-structured indoor envi-
ronments can be modeled using geometric
features. Walls, columns or the furniture are
able to be represented as a set of line seg-
ments, curve segments or corners. Given a
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range reading, many algorithms have been
proposed for mobile robotic mapping us-
ing line features extracted from 2D range
data. The work presented in [8] provides
an interesting survey and comparison on
line extraction algorithms for indoor environ-
ments, including the Split-and-Merge, Incre-
mental, Hough-transform, Line regression,
Random Sample Consensus (RANSAC), and
ExpectationMaximization (EM) algorithms.
Recently, in [9], the Distance-based Con-
volution Clustering (DCC) was introduced
for grouping the robots scanned points into
some clusters using a convolution operation.
These clusters were used for detecting lines
with a combination of Hough Transform and
line tracking algorithm. In Mohamad et al.’s
work [10], the authors define the Consec-
utive Clustering Algorithm (CCA) that in-
crementally adds new lines to the previously
calculated map-lines and merges them with
the overall map according to a statistical-
based analysis. New approaches as the pre-
sented in [11], adopt a new methodology
for detecting line and circle features that
does not depend on prior knowledge of the
environment.

All previous approaches process the 2D
scan for finding a set of geometric features.
Other approaches, such as the presented
in [12] or most recently [1], analyze the
laser scan as a local descriptor which can be
processed to extract a set of dominant points
which correctly segments the scan into curve
and line segments. In these approaches, in-
stead of using a slow, iterative solution, dom-
inant points are robustly detected by adapting
the scale to the local surroundings of each
range reading. The work presented in this
paper uses the adaptive curvature approach
described in [1], that allows to robustly seg-
ment the virtual laser scans (i.e., projections
of the depth information onto different 2D
planes) into curve and line segments and
corners (real and virtual) in a fast way.

Fig. 2. Demonstration of how can the frustum of
an RGBD sensor be divided given four input planes
(P0, P1, P2 and P3) and how to use such planes to
project two input points (p0, p1). The point p0 would
correspond to the pointcloud subset C2, p1 would
correspond to C1.

III. VIRTUAL 3D LASER FROM RGBD
INFORMATION

The generation of the virtual array of
lasers is a three-stage process: a) split the
point cloud gathered by the sensor in multi-
ple point subsets separated by planes parallel
to the ground and themselves; b) project all
points of all subsets to the ground plane; and
c) generate virtual laser readings with each
of the subsets of points.

The separation and projection is straight-
forward: since the planes are parallel to the
ground, the points can be partitioned using
their height and the one of the different
planes. Similarly, projection is achieved by
setting the height of the points to zero. Once
the points have been partitioned and pro-
jected –generating N smaller point clouds
C0...CN , where Ci contains all the points
between planes Pi−1 and Pi (see Fig. 2)– the
next step is to generate the virtual laser scans
L0...LN : First, the virtual readings pi(j) are
initialized with the maximum virtual laser
distance.

∀i, j : i ∈ [0, N), j ∈ [0,M) pi(j) =M

where M is the number of readings per laser
scan and M the maximum distance (which
depends on the RGBD sensor and its posi-
tion). After initialization, for each simulated
laser its output reading is updated using all
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Fig. 3. Overview of the three stages environment
description algorithm proposed in this paper.

the points in it. Each point p is converted
to polar coordinates, so each of them can be
matched to one specific reading of the virtual
laser: if the distance of the point is smaller
than the one of the current reading’s value,
the value is updated with the distance to the
point.

Therefore, the information provided by a
virtual laser sensor n in a single scan is
typically in the form {(r, ϕ)l|l = 1...NR}n,
on which (r, ϕ)l are the polar coordinates of
the l-th range reading (rl is the measured
distance of an obstacle to the sensor rotating
axis at direction ϕl). Similar to real laser
range finder, the virtual scan measurements
are acquired by the virtual sensor with a
given angular resolution ∆ϕ = φl − ϕl−1,
which is previously chosen by the user. The
distance rl is perturbed by a systematic error,
εs, and a statistical error, εr, usually assumed
to follow a Gaussian distribution with zero
mean and variance σ2

r .

IV. MULTI-LAYER CURVATURE
DESCRIPTION OF THE ENVIRONMENT

In this paper, the information acquired
by a RGBD sensor is processed to emulate
different laser scans on different heights.
Each virtual laser reading is then analyzed
according to the natural landmark extraction
algorithm described in [1]. Therefore, the
proposed approach provides a 3D description
of the environment, where rupture points
and breakpoints [13] and three features of
interest: line segments, corners (real and
virtual) and curve segments are detected over

each virtual scan laser. An overview of the
approach is illustrated in Fig. 3. A definition
of each item is given below:
• Rupture points are measurements from

the virtual scans associated to disconti-
nuities due to the absence of obstacles
in the scanning direction.

• Breakpoints are scan discontinuities due
to change of surface being scanned by
the emulated laser sensors.

• Line segments result from the scan of
planar surfaces (e.g. walls or the furni-
ture in indoor environments).

• Real Corners are due to change of
surface being scanned or to change in
the orientation of the scanned surface.
Virtual Corners corrresponds to the in-
tersection of two line segments.

• Curve segments result from the scan
of curve surfaces (e.g. columns within
indoor enviroments).

The method is summarized in the next
subsections.

A. Data acquisition and pre-processing

Once a set of LN virtual scan readings
is provided by the RGBD sensor as was
described in Sec. III, the first stage inde-
pently divides each laser scan into clusters
of consecutive range readings according to a
distance criterion. Let (r, ϕ)i−1 and (r, ϕ)i
be two consecutive range readings, they be-
long to the same segment iff the distance
between them is less than a given threshold.
Despite using a fixed threshold, these seg-
ment boundaries (breakpoints) are extracted
using the adaptive breakpoint detector [13].
In Fig. 4b, the segments associated to differ-
ent clusters for two different scan lasers in
the scenario drawn in Fig. 4a are shown with
different colors.

B. Segmentation of the virtual scan laser
based on curvature information

In the next stage, the curvature informa-
tion is used to characterise the local planar
scan provided by each virtual laser sensor.
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Fig. 4. a) Simulated environment; b) Segments of
two virtual laser scans (different colors are associated to
distinct clusters); and c) curvature functions associated
to b) (see Section C).

The curvature index at each range read-
ing of the laser scan is adaptively filtered
according to the distance between possible
corners in the whole laser scan. This method
permits to remove noise, but scan features
are nevertheless detected despite their natural
scale. For each range reading i of a laser
scan, the Cartesian coordinates are evaluated.
The proposed method for adaptive curvature
estimation in laser scan data consists of the
following steps:

1) Calculation of Kf (i) and Kb(i), the
maximum length of laser scan presents
no discontinuities on the right and left
sides of the range reading i respec-
tively. Kf (i) is calculated by compar-
ing the Euclidean distance from i to its
Kf (i)-th neighbour (d(i, i + Kf (i)))
to the real length of the laser scan
between both range readings (l(i, i +
Kf (i))). These distances tend to be
the same in absence of corners, even
if laser scans are noisy. Otherwise, the
Euclidean distance is quite shorter than

the real length. Thus, Kf (i) is the
largest value that satisfies

d(i, i+Kf (i)) > l(i, i+Kf (i))−Uk
(1)

where Uk is a constant value that de-
pends on the noise level tolerated by
the detector. Kb(i) is also set accord-
ing to Eq. (1), but using i − Kb(i)
instead of i + Kf (i). In the pre-
sented work, it has been experimen-
tally proven that Uk equal to 1.0 works
correctly.

2) Calculation of the local vectors
−→
fi and−→

bi associated to each range reading
i. These vectors present the variation
in the x and y axis between range
readings i and i+Kf (i) and between
i and i − Kb(i). If (xi, yi) are the
coordinates of the range reading i, the
local vectors associated to i are defined
as

−→
fi = (xi+Kf (i) − xi, yi+Kf (i) − yi)

= (fxi , fyi)−→
bi = (xi−Kb(i) − xi, yi−Kb(i) − yi)

= (bxi , byi)
(2)

3) Calculation of the curvature index
|Kθ(i)| (i.e., angle associated to the
range reading i). The angle at range
reading i can be estimated as follows

|Kθ(i)| = arccos

( −→
fi ·
−→
bi

|
−→
fi | · |

−→
bi |

)
(3)

4) Detection of corners over |Kθ(i)|. The
obtained curvature index represents
the curvature associated to each range
reading in an absolute manner. Corners
are those range readings which satisfy
the following conditions: i) they are
local peaks of the curvature function
and ii) their |Kθ(i)| values are over
the minimum angle required to be con-
sidered a corner instead of a spurious
peak due to remaining noise (θmin).
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Fig. 4c illustrates the curvature functions
associated to the virtual scan lasers shown in
Fig.4b.

C. Natural landmarks extraction from the
curvature function

The adaptive curvature function |Kθ(i)|
can directly provide three different natural
landmarks. In order to include these items
as landmarks in later robotic tasks, it is nec-
essary to characterize them. Next, |Kθ(i)| is
analyzed to extract the set of features of the
robot surrounding, that is achieved by fitting
parametric curves to the measurement data
associated with each line or curve segment.

1) Detection of line segments over
|κθ(i)|. Line segments result from the
scan of planar surfaces. Therefore,
they are those sets of consecutive range
readings which: i) are under a min-
imum angle (in the proposed experi-
ments, this minimum curvature height,
θmin, has been fixed at 0.05); and ii)
have a size over a minimum length
value (lmin=10 range readings). In or-
der to characterize the line segment,
the method described in [1] is used.
This method uses a linear regression
that approximate the set of points to
a straight-line in slope-intercept form
(α, the angle between the x-axis and
the normal of the line, and d the per-
pendicular distance of the line to the
origin).

2) Detection of curve segments over
κθ(i). Curve segments result from the
scan of curve surfaces. Contrary to
the curvature values associated to a
line segment, it can be appreciated that
the curvature function associated to a
curve segment presents a consecutive
set of local peaks, some of them could
be wrongly considered as corners. To
avoid this error, the algorithm asso-
ciates a cornerity index to each set
of consecutive range readings whose
κθ(i) values are over θmin or under

−θmin and have a size over lmin. This
cornerity index, ci, is defined as

ci =
1

ie−ib

∑ie
j=ib

κθ[j]

maxi∈(ib,ie){κθ[i]}
(4)

where ib and ie are the range readings
that bound the possible curve segment.
If ci is close to one, the mean curva-
ture of the segment and its maximum
value are similar, and the segment can
be considered as a curve segment. If
ci is low, the mean curvature of the
segment is lower than its maximum
value. Then, the segment cannot be
considered as a curve segment. There-
fore, curve segments are those sets of
consecutive range readings which do
not define a line segment and have a
cornerity index greater than a given
threshold Uc (Uc has been fixed at 0.5
in all experiments). Finally, the cluster
of points is then fit to a circle (i.e.,
center in (x0, y0) and radius ρ).

3) Detection of corners over κθ[i]. Cor-
ners are easily detected from the anal-
ysis of the curvature function as a
value associated to a local peak of
the curvature function, and a region
bounded by two range readings, ib and
ie. Thus, κθ[i] values must be over
the minimum angle required to be con-
sidered a corner instead of a spurious
peak due to remaining noise. Once
a real corner is detected, its position
(xc, yc) is estimated as the intersec-
tion of the two lines which generate
it. Virtual corners are defined as the
intersection of extended line segments
which are not previously defined as
real corners. Therefore, virtual corners
are also characterized in the same way
that real corners.

Fig. 5 show the natutal landmarks ex-
tracted by the proposal from the virtual scan
lasers presented in Fig. 4b.
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Fig. 5. a-b) Landmark detection associated with Fig. 4
(square - line segments end-points, triangle - corners).

V. EXPERIMENTAL RESULTS

To evaluate the performance of the pro-
posed algorithm, real and simulated data
were used. The algorithms have been devel-
oped in C++ software and the benchmark
tests have been performed on a PC with
processor Intel Core i5 2.4GHz with 4Gb of
DDR3 RAM and GNU-Linux Ubuntu 13.10.
The experiments were focused on the evalua-
tion of the algorithm in terms of robustness,
number of detected features and computa-
tional resources. A comparative study of
the proposal with the previous environment
description algorithm presented in [1] is also
provided.

A. Software architecture

The software to control the proposed sys-
tem is built on top of the robotics framework
RoboComp [14]. The software architecture
consists of a new component laserRGBD-
Comp implemented in the framework, which
fuses the RGBD information (rgbdComp)
into different emulated scan lasers running
in parallel. The software component cubafea-
turesComp has been modified in order to add
3D scan laser readings.

B. Simulated environments

The simulated data were acquired using
RCIS (RoboComp InnerModel Simulator)
[14]. RCIS is a 3D robot simulator de-
signed for use in academia, in early stages
of development, and, mainly, for research
purposes. One of its most remarkable fea-
tures is that it enables users to control the

noise produced by the simulated sensors
and actuators. This ability can be used to
test how robust algorithms are against noise
and, if noise is set to zero, to differentiate
between problems dealing with noise and
algorithm errors. RCIS implements all the
interfaces of the hardware abstraction layer
of RoboComp (e.g., Camera, Laser, RGBD,
Joint Motor Bus), which represent most of
the common hardware used in autonomous
robotics. For the tests described in this pa-
per different RGBD sensors with different
noise levels were simulated within an indoor
scenario. The use of this simulator allows
an evaluation of the algorithms according
to different sensor noise values. Fig. 6a il-
lustrates the simulated environment used in
the experiments. The scenario consists of a
simple room and a cylinder (marked as 1
in the figure) and two boxes of different
heights (2 and 3 in Fig. 6a) located in it.
In Fig. 6b, the segmentation of the robot
surrounding using five different virtual laser
sensors is shown. Finally, natural landmarks
detected by the algorithm for the virtual scan
lasers L1 and L3 are drawn in Fig. 6c.
Line segment end-points, corners and circle
segments are illustrated as squares, triangles
and circumferences, respectively.

The simulated scenario has been used for
evaluating the number of landmarks detected
by the proposed algorithm and its depen-
dence with the error of the RGBD sensor
and the number of virtual laser scans. These
results are summarized in Table I and Table
II. As shown in Table I, the computational
load allows to work at real time (all the
components run in parallel) and the number
of features is considerably increased (nc,
nls ncs and nt are the numbers of cor-
ners, line segments, curve segments and total
features detected by the algorithm, respec-
tively). In [1], the robustness of the envi-
ronment description algorithm was evaluated
according to two different metrics (TruePos
and FalsePos) and compared to similar
approaches with better results. Therefore,
for this comparative study, the presented



8 WORKSHOP OF PHYSICAL AGENTS, JUNE 2014, LEÓN (SPAIN)

Fig. 6. a) Simulated scenario used in the experiment;
b) virtual scan lasers (Li |i = 1...5); and c) natural
landmarks extracted by the proposal for two different
scan laser, L1 and L3.

approach is only compared to the previous
work. Thus, one virtual scan has been tak-
ing into account in a fixed height (L3) and
different noise levels are added to the RGBD
information. Three different RGBD sensor
noise values were used in the experiments.
The distance noise was simulated using a
normal distribution with µ = 0, and variance
values 0, 0.01 and 0.02 meters, respectively.
Table II updates the results described in
[1], including the results of the presented
proposal. Obviously, the robustness of the
proposal is similar to the other one and the
differences are insignificant and due to the
cumulative effect of using more planes.

C. Real environments

Real data were acquired using a RobEx
robot (Figure 1). The robot RobEx is a dif-
ferential robot designed by RoboLab at the

TABLE I
EXPERIMENTAL RESULTS OF THE ALGORITHM.

time consumption (ms) nc nls ncs nt Li

6.0 5 7 1 13 L1

6.0 5 7 1 13 L2

5.9 2 3 1 6 L3

5.9 2 3 0 5 L4

5.9 1 3 0 4 L5

5.95 15 23 3 41 LN=5

TABLE II
COMPARATIVE STUDY WITH THE PREVIOUS

AUTHOR’S WORK (SEE [1])

Núñez et al. ([1]) Proposed (LN=5) Algorithm
0.875 0.825 TruePos (σ=0m)
0.0 0.03 FalsePos (σ=0m)
0.815 0.79 TruePos (σ=0.01m)
0.02 0.12 FalsePos (σ=0.01m)
0.750 0.70 TruePos (σ=0.02m)
0.8 0.18 FalsePos (σ=0.02m)

University of Extremadura. For the experi-
ments described in this paper, a Kinect was
mounted on top of it and set up for acquiring
RGBD images at 30 fps. The robot was
teleoperated to a test area whitin RoboLab
facilities. Boxes and false walls were located
in front of the robot. Fig. 7a shows the
test area. In Fig. 7b, five different virtual
scan lasers are drawn. An example of the
extracted features from the L3 virtual scan
laser is shown. The number of landmarks has
been considerably increased respect to only
using a real scan. Table III shows the results
of the algorithm in this scenario.

TABLE III
RESULTS OF THE ALGORITHM IN THE REAL

ENVIRONMENT (LN=5)

nc nls ncs nt

27 20 0 47

VI. CONCLUSION AND FUTURE WORKS

This paper presents a multi-layer descrip-
tion of the robot surrounding by using a
set of virtual scan lasers to different heights
from a low-cost RGBD sensor. These virtual
scan readings are processed for extracting
natural landmark from the environment in
basis to its curvature information at real-
time. This approach extends the previous
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Fig. 7. a) Real scenario used in the experiment; and b)
natural landmarks extracted by the proposal using five
different scan lasers.

work of the authors to 3D scenarios, increas-
ing the number of landmarks detected and
characterized by the algorithm. The method
has been evaluated in real and simulated sce-
narios and compared to previous approaches.
Futute works are focused on using these
natural landmarks in more complex robotics
task, as localization or SLAM. Also the color
information from the RGBD sensor can be
evaluated in the segmentation process.

ACKNOWLEDGMENT

This work has been supported by the
MICINN Projects TIN2012-38079-C03-01
and TIN2012-38079-C03-03 and by the Ex-
tremadura Project GR10144.

REFERENCES
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